If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-5=6a
We move all terms to the left:
a^2-5-(6a)=0
a = 1; b = -6; c = -5;
Δ = b2-4ac
Δ = -62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{14}}{2*1}=\frac{6-2\sqrt{14}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{14}}{2*1}=\frac{6+2\sqrt{14}}{2} $
| 24=4×x | | .5x+3.4=6.4 | | 5x+6=5x+-11 | | 3x+15-x=2x+7 | | 1.5y=3 | | 4m-8m^2-8m=24 | | (x+5)+x=39 | | 56=28-4(x-2) | | 4=10w | | 16+y=45 | | 3x-9-3=12 | | Yx4=11 | | 10s=6+10 | | -6b-4b+7b=10-b+3= | | 32x2-16=64 | | a^2-4=3a | | 36-4=t | | 21+6x=-5(3x-9) | | 4+3(x-3)=19 | | 1/15=n/9 | | 2n+11=0.5(5n-2+n+8) | | 3x-5(x-3)=-5+3x-20 | | 10-10=6-x | | 21-x=127 | | n/1.4=14 | | 11+7/9r=4 | | 3x-3-2x-6=36 | | 79(y+4)=49 | | 3x-3-2x-6=33 | | 6.4=4h | | 3(x-5)=10÷12 | | 2{x=5 |